112 research outputs found

    RADAR - A repository for long tail data

    Get PDF

    Reproducible research through persistently linked and visualized data

    Get PDF
    The demand of reproducible results in the numerical simulation of opto-electronic devices or more general in mathematical modeling and simulation requires the (long-term) accessibility of data and software that were used to generate those results. Moreover, to present those results in a comprehensible manner data visualizations such as videos are useful. Persistent identifier can be used to ensure the permanent connection of these different digital objects thereby preserving all information in the right context. Here we give an overview over the state-of-the art of data preservation, data and software citation and illustrate the benefits and opportunities of enhancing publications with visual simulation data by showing a use case from opto-electronics

    Reproducible research through persistently linked and visualized data

    Get PDF
    The demand of reproducible results in the numerical simulation of opto-electronic devices or more general in mathematical modeling and simulation requires the (long-term) accessibility of data and software that were used to generate those results. Moreover, to present those results in a comprehensible manner data visualizations such as videos are useful. Persistent identifier can be used to ensure the permanent connection of these different digital objects thereby preserving all information in the right context. Here we give an overview over the state-of-the art of data preservation, data and software citation and illustrate the benefits and opportunities of enhancing publications with visual simulation data by showing a use case from opto-electronics

    Towards Semantic Integration of Federated Research Data

    Get PDF
    Digitization of the research (data) lifecycle has created a galaxy of data nodes that are often characterized by sparse interoperability. With the start of the European Open Science Cloud in November 2018 and facing the upcoming call for the creation of the National Research Data Infrastructure (NFDI), researchers and infrastructure providers will need to harmonize their data efforts. In this article, we propose a recently initiated proof-of-concept towards a network of semantically harmonized Research Data Management (RDM) systems. This includes a network of research data management and publication systems with semantic integration at three levels, namely, data, metadata, and schema. As such, an ecosystem for agile, evolutionary ontology development, and the community-driven definition of quality criteria and classification schemes for scientific domains will be created. In contrast to the classical data repository approach, this process will allow for cross-repository as well as cross-domain data discovery, integration, and collaboration and will lead to open and interoperable data portals throughout the scientific domains. At the joint lab of L3S research center and TIB Leibniz Information Center for Science and Technology in Hanover, we are developing a solution based on a customized distribution of CKAN called the Leibniz Data Manager (LDM). LDM utilizes the CKAN’s harvesting functionality to exchange metadata using the DCAT vocabulary. By adding the concept of semantic schema to LDM, it will contribute to realizing the FAIR paradigm. Variables, their attributes and relationships of a dataset will improve findability and accessibility and can be processed by humans or machines across scientific domains. We argue that it is crucial for the RDM development in Germany that domain-specific data silos should be the exception, and that a semantically-linked network of generic and domain-specific research data systems and services at national, regional, and organization levels should be promoted within the NFDI initiative

    Leibniz Data Manager – An adaptive Research Data Management System

    Get PDF
    The increasing demand of researchers to make the underlying research data openly accessible, in addition to the classic publication forms, can improve the reproducibility of scientific findings, whether voluntarily or due to the institution’s or research funders’ requirements. As a result, researchers depend on expressive descriptions of research data for reusability. These descriptions are in the form of comprehensive metadata stored in heterogeneous formats in research data repositories. However, finding the appropriate data is arduous, as there is a growing amount of research data stored in various places and only a few repositories offer the function of displaying a preview of the data. Research work efficiency can benefit from data previews whenever researchers can explore portions of a dataset before deciding on the relevance of the data for accessing and downloading the whole dataset. The Leibniz Data Manager (LDM) is a research data management system that resorts to Semantic Web technologies to empower FAIR principles. LDM supports searching and exploring research data across various repositories. LDM provides an additional (meta-)data management layer for data collected from existing research data repositories based on the webbased data catalog software CKAN (Comprehensive Knowledge Archive Network). The primary purpose of LDM is to preview research data, e.g., tables, audio-visual material like AutoCAD files or 2D and 3D data, or live programming code via Jupyter Notebook(s) so that their potential for reuse can be easily evaluated. Since LDM is available as a Docker container, anyone can install a local LDM distribution to assist research data management in different phases of the data lifecycle. LDM is accessible at https://service.tib.eu/ldmservice/. LDM empowers researchers by supporting them in preserving their research data as open and FAIR as possible. With LDM, researchers can check whether their data is displayed correctly and whether it is available in suitable and preferably open data formats before publication. In addition, humans and computational programs can access machine-readable metadata, which can be exported in various schemas (DCAT, DataCite, and DublinCore) and RDF serializations. This enables automated searching and processing by various data bases and tools. More importantly, DataCite DOIs and ORCIDs ensure the persistence and findability of LDM (meta-)data. At the poster session we will demonstrate how scientists can be supported in searching for datasets and preserving their research data. We are also interested in collecting ideas about future requirements to be implemented in upcoming versions of the LDM

    Warum und wie Sie Klimamodelldaten veröffentlichen sollten

    Get PDF
    Vorhersage und ProjektionBei Klimasimulationen werden große Mengen an Daten erzeugt. Aus diesem Grund können in der Regel nicht alle Ergebnisse einer Simulation eines Klimamodells von einer Forschungsgruppe alleine ausgewertet werden. Beim Coupled Model Intercomparison Projekt (CMIP) wird daher ein Fokus darauf gelegt, dass auch andere Forschungsgruppen die Daten auswerten können. Deshalb gibt es genaue Vorgaben, wie diese Daten zu beschreiben und zu formatieren sind. Zudem werden viele dieser DatensĂ€tze mit einem DOI (Digital Object Identifier) versehen. Dies alles erleichtert die Suche und Weiterverarbeitung der Daten. Allerdings gibt es weitaus mehr als CMIP Daten, die fĂŒr die Klimaforschung wichtig sind. Viele Ergebnisse von z.B. regionalen Klimamodellen oder Stadtklimamodellen werden nicht veröffentlicht, obwohl von den Datenerzeugern nur ein Bruchteil der Ergebnisse ausgewertet werden kann. Deshalb drĂ€ngen viele Förderer auf eine Veröffentlichung der Daten in einem Repositorium. Aber auch in diesem Fall können sie oft nicht weiterverwendet werden. Die GrĂŒnde sind vielfĂ€ltig: Unzureichende Metadaten Mangelnde Auffindbarkeit, z.B. durch Suchmaschinen Fehlende Rechte zur Weiterverarbeitung Fehlende QualitĂ€tskontrolle Das BMBF geförderte Projekt AtMoDat (https://www.ATMODAT.de) wurde 2019 gestartet, um die Veröffentlichung von AtmosphĂ€rischen Modelldaten zu stĂ€rken und zu verbessern. Eine Methode ist dabei die Einhaltung der FAIR-Prinzipien - Findable, Accessible, Interoperable, Reusable (siehe Wilkinson et al., 2016). Zudem sollten alle Daten mit einem DataCite DOI veröffentlicht werden, um die Auffindbarkeit und Zitierbarkeit zu verbessern. Eine Anleitung, wie man dabei vorgehen sollte, findet sich in dem Standard, der im AtMoDat-Projekt entwickelt wurde. Der ATMODAT-Standard ist leicht umzusetzen und beinhaltet genaue Vorgaben fĂŒr die Metadaten des DOI, die Landing Page und die Header der netCDF-Dateien. Daten, die diesem Standard genĂŒgen und dessen Einhaltung vom jeweiligen Repositorium geprĂŒft wurde, können mit dem Earth System Data Branding (EASYDAB) versehen werden. Durch dieses Branding kann eine angemessene QualitĂ€tssicherung der Daten durch die Nutzer sehr leicht nachvollzogen werden. Im Vortrag werden der Standard und EASYDAB vorgestellt
    • 

    corecore